

NIKIT ABHYANKAR, PH.D.

Goldman School of Public Policy
University of California, Berkeley
2607 Hearst Ave
Berkeley, CA 94720, USA

Phone: +1-(650)-644-7178
Email: nikit@berkeley.edu
Web: gspp.berkeley.edu/nikit-abhyankar
Personal: <http://www.nikitabhyankar.com>

CURRENT APPOINTMENTS

University of California, Berkeley, *Co-Faculty Director, India Energy and Climate Center*

University of California, Berkeley, *Associate Adjunct Professor, Goldman School of Public Policy*

Lawrence Berkeley National Laboratory, *Scientist*

EDUCATION

Stanford University, *Ph.D., [Environment and Resources](#)*

Field: Energy Economics and Policy

University of Pune, *M.A., Economics*

College of Engineering, University of Pune, *B. Eng., Electrical Engineering* (University of Pune Gold Medal)

PREVIOUS APPOINTMENTS

Lawrence Berkeley National Laboratory, *Research Affiliate*, 2009-2012

Stanford University Precourt Energy Efficiency Center, *Research Assistant*, 2012

Stanford University, *Teaching Assistant*, 2009-2010

Prayas Energy Group (India), *Research Associate*, 2004-2007

HONORS AND AWARDS

Berkeley Lab Director's Award for Exceptional Scientific Achievement in Societal Impact (2021)

Berkeley Lab Spot Award for Initiatives in Power System Modeling (2020)

Rudolph and McGee research fellowships, Stanford University (2008-2012)

RESEARCH

Focus: electricity markets & policies, renewable energy, electric vehicles, energy efficiency, industrial energy.

History of leading extremely high impact and comprehensive energy studies such as [The 2035 Reports \(U.S.\)](#), [Flexible Resources Initiative \(India\)](#), [China Clean Power](#), [India Energy Independence](#), [Japan 2035 Report](#), etc.

Over 100 peer-reviewed and other research papers. Wide coverage of the research in major media.

Regular advice to governments, regulators, and utilities on designing clean energy policies and programs.

SELECTED PUBLICATIONS

PEER-REVIEWED ARTICLES

1. Peng, Liqun, Gang He, Nikit Abhyankar, Haozhe Yang, Umed Paliwal, Jiang Lin (2025). "Aligning offshore wind deployment with local priorities to accelerate power system decarbonization", *Environmental Science and Technology* (Under Review)
2. Abhyankar, Nikit, Jose Dominguez, Nihar Shah, and Amol Phadke (2025). "[Accelerating Room Air Conditioner Efficiency in India: Grid, Economic, and Policy Implications through 2035](#)", *The Electricity Journal*, Volume 38, Issue 3, 2025, 107493, ISSN 1040-6190.
3. Chojkiewicz, Emilia, Nikit Abhyankar, Amol Phadke (2025). "[Declining Costs Make Solar Plus Storage Economical for Industrial Captive Power](#)", *iScience* 0(0), 113763.
4. Shiraishi, Kenji, Umed Paliwal, Nikit Abhyankar, Daniel M Kammen, Amol Phadke and Won Young Park (2025) "[Exploring offshore wind's potential to enhance energy security in nations with limited land and fuel resources](#)", *Environmental Research Letters*, 0(0).
5. Park, Won Young, Nikit Abhyankar, Umed Paliwal, James Hyungkwan Kim, Nina Khanna, Kenji Shiraishi, Jiang Lin, Amol A. Phadke, Yong Hyun Song, Hee Seung Moon, Eunsung Kim, Sanghyun Hong, Seung Wan Kim (2024). "[A Clean Energy Korea by 2035: Transitioning to 80% Carbon-Free Electricity Generation](#)", *Cell Reports Sustainability*, Volume 2, Issue 1, 2025, 100262, ISSN 2949-7906.
6. Chojkiewicz, Emilia, Umed Paliwal, Nikit Abhyankar, Casey Baker, Ric O'Connell, Duncan Callaway, Amol Phadke (2024). "[Accelerating transmission expansion by using advanced conductors in existing right-of-way](#)", *Proceedings of the National Academy of Sciences (PNAS)* 121 (40) e2411207121.
7. Hendrickson, Thomas, Nikit Abhyankar, Priyanka Mohanty, Kimberly Mayfield, Whitney Kirkendall, Alexander Stanley, Stephen Slack, Hung-Chia Yang, Andrew Satchwell (2024). "[Decarbonizing the US Energy System](#)", *Annual Reviews of Environment and Resources*, Vol. 49.
8. Abhyankar, Nikit, Umed Paliwal, Michelle Solomon, Michel O'Boyle, Jeremy Fisher, Amol Phadke (2023). "[A New Era for Rural Electric Cooperatives New clean energy investments, supported by federal incentives, will reduce rates, emissions, and reliance on outside power](#)", *The Electricity Journal* Volume 36, Issue 8, 2023, 107334.
9. Abhyankar, Nikit, Priyanka Mohanty, Shruti Deorah, Nihan Karali, Umed Paliwal, Jessica Kersey, Amol Phadke (2023). "[India's path towards energy independence and a clean future: Harnessing India's renewable edge for cost-effective energy independence by 2047](#)", *The Electricity Journal*, Volume 36, Issue 5, 2023, 107273.
10. Rajagopal, Deepak, Narayan Gopinathan, Aditya Khandekar, Nihan Karali, Amol Phadke, & Nikit Abhyankar, (2023). "[Comparative Evaluation of Total Cost of Ownership of Battery-Electric and Diesel Trucks in India](#)". *Transportation Research Record*, 0(0).

11. Godara, Rakesh, Nikhil Gakkhar, Shruti Deorah, Aditya Khandekar, Nikit Abhyankar, Bhautik Gajera, Akash Deep Singh & Anil Kumar Sarma (2023). "[Assessment of Economics of Hybrid Biomass Systems and Value to Grid](#)", *Recent Advances in Bio-Energy Research* 2022. ICRABR-2022, 255-266.
12. Bistline, John, Nikit Abhyankar, Geoffrey Blanford, Leon Clarke, R Fakhry, H McJeon, J Reilly, C Roney, T Wilson, M Yuan, A Zhao (2022). "[Actions for Reducing U.S. Greenhouse Gas Emissions at Least 50% by 2030](#)", *Science* 376 (6596) 922-924.
13. Abhyankar, Nikit, Jiang Lin, Fritz Kahrl, Shengfei Yin, Umed Paliwal, Xu Liu, Nina Khanna, Qian Luo, David Wooley, Mike O'Boyle, Olivia Ashmoore, Robbie Orvis, Michelle Solomon, Amol Phadke (2022). "[Achieving an 80% Carbon Free Electricity System in China by 2035](#)", *iScience* 25(10) 105180 (2022).
14. Lin, Jiang, Nikit Abhyankar, Gang He, Xu Liu, Shengfei Yin (2022). "[Large balancing areas and dispersed renewable investment enhances grid flexibility in a renewable-dominant power system in China](#)", *iScience* 25 (2), 103749 (2022).
15. Santana, Paulo, Nikit Abhyankar, and Luiza Bertazzoli (2021) "[Promoting Bus Electrification through Policy Mechanisms: A Case Study in Large Cities in Brazil](#)". *International Journal of Development Research*, 11 (12), 52446-52457 (2021).
16. He, Gang, Jiang Lin, Froylan Sifuentes, Xu Liu, Nikit Abhyankar, and Amol Phadke (2020) "[Rapid cost decrease of renewables and storage accelerates the decarbonization of China's power system](#)". *Nature Communications* (11), 2486 (2020).
17. Phadke, Amol, Nikit Abhyankar, Ranjit Deshmukh, Julia Szinai et al (2020), "[Cost-effective decarbonization of California's Power Sector by 2030 With the Aid of Battery Storage](#)", In *POWER Conference on Energy Research and Policy* (April 2020), University of California, Berkeley.
18. Abhyankar, Nikit, Jiang Lin, Xu Liu, and Froylan Sifuentes (2020). "[Economic and environmental benefits of market based power system reform in China](#)", *Resources, Conservation & Recycling* 153 (2020).
19. Karali, Nihan, Nikit Abhyankar, Aditya Khandekar (2020), "[Empirical Assessment of the Appliance-Level Load Shape and Demand Response Potential in India](#)", In *Energize- Energy Innovation for a Sustainable World* (February 2020), India.
20. Phadke, Amol, Won Young Park, Nikit Abhyankar (2019) "[Providing reliable and financially sustainable electricity access in India using super-efficient appliances](#)", *Energy Policy*, 132(0), 1163-1175.
21. Szinai, Julia, Colin Sheppard, Nikit Abhyankar, Anand Gopal (2019), "[Managing Electric Vehicle Charging Can Reduce Renewable Energy Curtailment and the Cost of Grid Operations in California](#)". *Energy Policy* (0) 111051.
22. De la Rue du Can, Stephane, Aditya Khandekar, Nikit Abhyankar, Amol Phadke (2019) "[Modeling India's Energy Future Using a Bottom-up Approach](#)", *Applied Energy*, 238(0), 1108-1125.
23. Soonee, S., Narasimhan, S., Joshi, M., Cochran, J., Palchak, D., Ehlen, A., McBennett, B., Sreedharan, P., Abhyankar, N., Deshmukh, R. (2018), "[Analysis of Strategies for Integrating 175 GW of Renewable Energy in India](#)," *IEEE Innovative Smart Grid Technologies Asia* 2018.
24. Rai, Varun, Rahul Tongia, Gireesh Shrimali, Nikit Abhyankar, (2017) "[Data for development: The case for an Indian energy information administration](#)", *Energy Research & Social Science*, 25(0), 105-109.

25. Deshmukh, R., D Callaway, N. Abhyankar, A. Phadke (2017). "[Cost and Value of Wind and Solar in India's Electric System in 2030](#)". In *1st International Conference on Large Scale Renewable Energy Grid Integration* in India. New Delhi, India.
26. Abhyankar, Nikit, Nihar Shah, Virginie E Letschert, and Amol A Phadke. (2017) "[Assessing the Cost-Effective Energy Saving Potential from Top-10 Appliances in India](#)". In *9th International Conference on Energy Efficiency in Domestic Appliances and Lighting (EEDAL)*. Irvine, California.
27. Park WY, A. Phadke, N. Abhyankar and N. Shah (2017), "Relationship between Appliance Prices and Energy-Efficiency Standards and Labeling Policies: Empirical Evidence from Residential Air Conditioners". In *9th International Conference on Energy Efficiency in Domestic Appliances and Lighting (EEDAL)*. Irvine, California.
28. Shah, Nihar, N. Abhyankar, A. Phadke, and G. Ghatikar. (2015), "[Considerations in Standardization for Demand Ready Air Conditioners in India](#)". In *India Smart Grid Week (ISGW) 2015*, Bangalore, India.
29. Phadke, Amol, N. Abhyankar, and N. Shah. (2013), "[Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges](#)". In *7th International Conference on Energy Efficiency in Domestic Appliances and Lighting (EEDAL)*. Coimbra, Portugal.
30. Abhyankar, Nikit, & Phadke, A. (2012). "[Impact of large-scale energy efficiency programs on utility finances and consumer tariffs in India](#)". *Energy Policy*, 43(0), 308-326.
31. Abhyankar, Nikit (2012). "[Political Economy of Natural Gas Market in India](#)". *The Stanford Energy Journal*, (2) 2012.
32. Chikkatur, Ananth P., Sagar, A. D., Abhyankar, N., & Sreekumar, N. (2007). "[Tariff-based incentives for improving coal-power-plant efficiencies in India](#)". *Energy Policy*, 35(7), 3744-3758.
33. Abhyankar, Nikit (2005). "[Power Sector Restructuring in Madhya Pradesh](#)". *Economic and Political Weekly*, XL (48).

OTHER RESEARCH REPORTS

34. Kumar, Shashwat, Ammu Susanna Jacob, Nikit Abhyankar (2025) "[GreenCycles: A Framework for Designing Solar-Plus-Storage Tenders in Indian States](#)", Center for Strategic and International Studies (CSIS).
35. Abhyankar, Nikit (2025) "[Demand-Side Resources Can Power India's Clean and Affordable Energy Future](#)", India Energy and Climate Center, Goldman School of Public Policy, University of California, Berkeley.
36. Abhyankar, Nikit and Umed Paliwal, Sambit Base, Himanshu Chawla (2025) "[Strategic Pathways for Energy Storage in India through 2032](#)", India Energy and Climate Center, Goldman School of Public Policy, University of California, Berkeley and Power Foundation of India, Ministry of Power.
37. Abhyankar, Nikit Jose Dominguez, Amol Phadke (2025) "[Feasibility of Green Hydrogen Use in Natural Gas DRI Furnaces: A Technical and Economic Review](#)", India Energy and Climate Center, Goldman School of Public Policy, University of California, Berkeley.
38. Chojkiewicz, Emilia, Nikit Abhyankar, Amol Phadke (2025) "[HTLS Conductors can Cost-Effectively Future-proof India's Electricity Grid](#)", India Energy and Climate Center, Goldman School of Public Policy, University of California, Berkeley.

39. Chojkiewicz, Emilia, Nikit Abhyankar, Amol Phadke (2025) "[Plummeting Solar+Storage Auction Prices in India Unlock Affordable, Inflation Proof, 24/7 Clean Power](#)", India Energy and Climate Center, Goldman School of Public Policy, University of California, Berkeley.
40. Abhyankar, Nikit, Jose Dominguez, Nihar Shah, Neelima Jain, Amol Phadke (2025) "[India Can Avert Power Shortages and Cut Consumer Bills with Stronger AC Efficiency Standards](#)", India Energy and Climate Center, Goldman School of Public Policy, University of California, Berkeley.
41. Paliwal, Umed, Emilia Chojkiewicz, Nikit Abhyankar, Amol Phadke (2025), "[Existing power plants sharing grid access with renewables can lower costs and double U.S. generation capacity](#)", University of California Berkeley and GridLab.
42. Abhyankar, Nikit, Tarannum Sahar, Amol Phadke (2024), "[Rapid Deployment of Solar and Storage Is the Main Option for Avoiding Power Shortages in India](#)", India Energy and Climate Center, Goldman School of Public Policy, University of California, Berkeley.
43. Emilia Chojkiewicz, Nikit Abhyankar, Umed Paliwal, Amol Phadke (2024), "[Indonesia Can Cost-effectively Supplant Captive Coal-fired Power Plants with Solar Energy](#)", Goldman School of Public Policy, University of California, Berkeley.
44. Paliwal, Umed, Nikit Abhyankar, Kenji Shiraishi, Amol Phadke (2024). "[Offshore Wind in Japan: Potential and Opportunities](#)", Working Paper 5, Center for Environmental Public Policy, Goldman School of Public Policy, University of California, Berkeley.
45. Emilia Chojkiewicz, Umed Paliwal, Nikit Abhyankar, Casey Baker, Ric O'Connell, Duncan Callaway, Amol Phadke (2023). "[Accelerating transmission expansion by using advanced conductors in existing right-of-way](#)", Working Paper (343), University of California Energy Institute.
46. Emilia Chojkiewicz, Umed Paliwal, Nikit Abhyankar, Casey Baker, Ric O'Connell, Duncan Callaway, Amol Phadke (2023). "[Reconductoring with Advanced Conductors Can Accelerate the Rapid Transmission Expansion Required for a Clean Grid](#)", GridLab.
47. Paliwal, Umed, Nikit Abhyankar, T McNair, D Wooley, R O'Connell (2023), "[2035 and Beyond: Abundant, Affordable Offshore Wind Can Accelerate Our Clean Electricity Future](#)", Goldman School of Public Policy, University of California
48. Abhyankar, Nikit, Priyanka Mohanty, Shruti M. Deorah, Nihan Karali, Umed Paliwal, Jessica Kersey, and Amol A. Phadke. (2023), "[Pathways to Atmanirbhar Bharat: Harnessing India's Renewable Edge for Cost-Effective Energy Independence by 2047](#)", Lawrence Berkeley National Laboratory.
49. Shiraishi, Kenji, Won Young Park, Nikit Abhyankar, Umed Paliwal, Nina Khanna, Toru Morotomi, Jiang Lin, Amol A. Phadke (2023). "[The 2035 Japan Report: Plummeting Costs of Solar, Wind, and Batteries Can Accelerate Japan's Clean and Independent Electricity Future](#)", Lawrence Berkeley National Laboratory.
50. Park, Won Young, Nikit Abhyankar, Umed Paliwal, James Hyungkwan Kim, Nina Khanna, Kenji Shiraishi, Jiang Lin, Amol A. Phadke, Yong Hyun Song, Hee Seung Moon, Eunsung Kim, Sanghyun Hong, Seung Wan Kim

- (2023). "[A Clean Energy Korea by 2035, Transitioning to 80% Carbon-Free Electricity Generation](#)", Lawrence Berkeley National Laboratory.
51. Park, Won Young, Nina Khanna, James Hyungkwan Kim, Kenji Shiraishi, Nikit Abhyankar, Umed Paliwal, Jiang Lin, Amol A. Phadke, Hee Seung Moon, Yong Hyun Song, Eunsung Kim, Sanghyun Hong, Yunsik Chung, and Seung Wan Kim (2023). "[Korean Power System Challenges and Opportunities, Priorities for Swift and Successful Clean Energy Deployment at Scale](#)", Lawrence Berkeley National Laboratory.
52. Mohanty, Priyanka, Emilia Chojkiewicz, Epica Mandal Sarkar, Rohit Laumas, Akash Saraf, Avanthika Satheesh, and Nikit Abhyankar. (2023). "[Review of Grid-Scale Energy Storage Technologies Globally and in India](#)", Lawrence Berkeley National Laboratory.
53. Abhyankar, Nikit, Umed Paliwal, Michelle Solomon, Michel O'Boyle, Jeremy Fisher, Amol Phadke (2023). "[A New Era for Rural Electric Cooperatives: New clean energy investments, supported by federal incentives, will reduce rates, emissions, and reliance on outside power](#)", Working Paper 3, Center for Environmental Public Policy, Goldman School of Public Policy, University of California, Berkeley.
54. Abhyankar, Nikit, Amol Phadke, Umed Paliwal, Virginie Letschert, Bruce Hamilton, Barbara O'Neil, Maxwell Brown (2022). "[Least Cost Pathways for Indonesia's Power Sector through 2050](#)", Lawrence Berkeley National Laboratory.
55. Wooley, David, Nikit Abhyankar, Oliver James, Jamie Matos, Meghan Harwood, Jerold Brito, Simone Cobb, Erica Grignaschi, Zachary Zimmerman (2023) "[The Future of Energy, Environment, and Natural Resources](#)", A California 100 Report on Policies and Future Scenarios, University of California, Berkeley.
56. Abhyankar, Nikit, Narayan Gopinathan, Aditya Khandekar, Nihan Karali, Amol Phadke, and Deepak Rajagopal (2022). "[Freight Trucks in India are Primed for Electrification](#)", Lawrence Berkeley National Laboratory.
57. Abhyankar, Nikit, Jiang Lin, Fritz Kahrl, Shengfei Yin, Umed Paliwal, Xu Liu, Nina Khanna, Qian Luo, Amol Phadke, David Wooley, Mike O'Boyle, Olivia Ashmoore, Robbie Orvis, Michelle Solomon (2022). "[Achieving an 80% Carbon Free Electricity System in China by 2035](#)", Lawrence Berkeley National Laboratory.
58. Wooley, David, Nikit Abhyankar, Oliver James, Jamie Matos, Meghan Harwood, Jerold Brito, Simone Cobb, Erica Grignaschi, Zachary Zimmerman (2022). "[The Future of Energy, Environment, and Natural Resources: A California 100 Report On Policies and Future Scenarios](#)", Goldman School of Public Policy, University of California, Berkeley.
59. Abhyankar, Nikit, David Wooley, Amol Phadke (2022). "[Clean truck deployment consistent with President Biden's climate commitment can save \\$1 trillion for consumers and avoid 70,000 premature deaths by 2050](#)", Working Paper 2, Center for Environmental Public Policy, Goldman School of Public Policy, University of California, Berkeley.
60. Paliwal, Umed, Nikit Abhyankar, David Wooley, Amol Phadke (2022). "[The Offshore Report: California, Plummeting offshore wind costs can accelerate a diverse net-zero grid](#)", Working Paper 1, Center for Environmental Public Policy, Goldman School of Public Policy, University of California, Berkeley.

61. Abhyankar, Nikit, Shruti Deorah, Nihan Karali, Priyanka Mohanty, Jessica Kersey, Umed Paliwal, Amol Phadke (2022). [Harnessing India's Renewable Edge for Cost-Effective Energy Independence: Sectoral Pathways](#), Lawrence Berkeley National Laboratory.
62. Deorah, Shruti, Aditya Khandekar, Deepak Rajagopal, Nikit Abhyankar (2022). [Pathways for Electrification of South Asia's Transportation Sector](#), Lawrence Berkeley National Laboratory.
63. Khandekar, Aditya, Shruti Deorah, Nikit Abhyankar (2022). [Feasibility and Impact of Biomass and Renewable Energy Hybrid Systems](#), Lawrence Berkeley National Laboratory.
64. Karali, Nihan, Nikit Abhyankar, Shruti Deorah (2022). [Electricity demand in South Asia – data gaps and pathways for research and modeling](#), Lawrence Berkeley National Laboratory.
65. Abhyankar, Nikit, Shruti Deorah, Amol Phadke (2021). [Least Cost Pathway for India's Power System Investments through 2030](#), Lawrence Berkeley National Laboratory.
66. Deorah, Shruti, Nikit Abhyankar, Siddharth Arora, Kanika Chawla, Amol Phadke (2021). [Assessing the Key Requirements for 450 GW of Renewable Capacity in India by 2030](#), Lawrence Berkeley National Laboratory.
67. Kahrl, Frederick, Shruti Deorah, Lakshmi Alagappan, Paul Sotkiewicz, Nikit Abhyankar (2021). [Policy and Regulatory Recommendations to Support a Least Cost Pathway for India's Power Sector](#), Lawrence Berkeley National Laboratory.
68. Lin, Jiang, Nikit Abhyankar, Gang He, Xu Liu, Shengfei Yin (2021). [Enhancing grid flexibility under scenarios of a renewable-dominant power system in China](#), Lawrence Berkeley National Laboratory.
69. Cutter, Eric, E. Rogers, A. Nieto, J Leana, J Kersey, T McNair, N Abhyankar (2021), “[Distribution Grid Cost Impacts Driven by Transportation Electrification](#)”, Goldman School of Public Policy, University of California, Berkeley.
70. Abhyankar, Nikit, Umed Paliwal, Amol Phadke, Taylor McNair, David Wooley, Michael O'Boyle (2021). “[2030 Report: Powering America's Clean Economy](#)”, Goldman School of Public Policy, University of California, Berkeley.
71. Abhyankar, Nikit, Priyanka Mohanty, Amol Phadke (2021). “[Illustrative Strategies for the United States to Achieve 50% Emissions Reduction by 2030](#)”, Lawrence Berkeley National Laboratory.
72. Phadke, Amol, Nikit Abhyankar, Jessica Kersey, Taylor McNair, Umed Paliwal et al (2021). “[2035 Report 2.0: Plummeting Costs and Dramatic Improvements in Batteries Can Accelerate Our Clean Transportation Future](#)”, Goldman School of Public Policy, University of California Berkeley.
73. Phadke, Amol, Aditya Khandekar, Nikit Abhyankar, David Wooley, and Deepak Rajagopal (2021). “[Why Regional and Long-Haul Trucks are Primed for Electrification Now](#)”, Lawrence Berkeley National Laboratory.
74. O'Boyle, Michael, Sara Baldwin, Sarah Spengeman, Taylor McNair, Amol Phadke, Nikit Abhyankar, Umed Paliwal (2021), “[A National Clean Electricity Standard To Benefit All Americans, Energy Innovation Policy and Technology](#)”, San Francisco.
75. Joshi, Mohit, Palchak, David, Horowitz, Russell, Waite, Taryn, Evans, Meredydd, Yu, Sha, Voisin, Nathalie, Alam, Jan, Karali, Nihan, Deorah, Shruti, and Abhyankar, Nikit. (2021), “[Charting a Path for Research and Development of Reliability and Resilience in South Asia's Power Sector](#)”, National Renewable Energy Laboratory.

76. Phadke, Amol, S Aggarwal, M O'Boyle, E Gimon, N Abhyankar (2020), "[Illustrative Pathways To 100 Percent Zero Carbon Power By 2035 Without Increasing Customer Costs](#)", Energy Innovation Policy and Technology, San Francisco.
77. Phadke, Amol, U Paliwal, N Abhyankar, T McNair, B Paulos, D Wooley, R O'Connell (2020), "[2035 Report: Plummeting Solar, Wind, and Battery Costs Can Accelerate Our Clean Energy Future](#)", Goldman School of Public Policy, University of California.
78. Deorah, Shruti, Nikit Abhyankar, Siddharth Arora, Ashwin Gambhir, Amol Phadke (2020), "[Estimating the Cost of Grid-Scale Lithium-Ion Battery Storage in India](#)", Lawrence Berkeley National Laboratory – 2001314.
79. Letschert, V, S Price, WY Park, N Karali, N Abhyankar, at al (2020), "[Accelerating the Transition to More Energy Efficient Air Conditioners in Indonesia](#)", Lawrence Berkeley National Laboratory.
80. Sheppard, Colin, Julia Szinai, Nikit Abhyankar, Anand Gopal (2019), "[Grid Impacts of Electric Vehicles and Managed Charging in California](#)", Lawrence Berkeley National Laboratory.
81. Karali, Nihan, Nikit Abhyankar, Aditya Khandekar (2019), "[Characterizing Appliance Level Demand Response Potential in India](#)", Lawrence Berkeley National Laboratory.
82. Karali, Nihan, Nikit Abhyankar, Ben Sharpe, Anup Bandivadekar (2019), "[Improving Fuel Efficiency of Heavy Duty Vehicles \(3.5 to 12 tonnes\) in India: Benefits, Costs, and Environmental Impacts](#)". Lawrence Berkeley National Laboratory.
83. Khandekar, Aditya, Deepak Rajagopal, Nikit Abhyankar, Shruti Deorah, and Amol Phadke (2018), "[Economic case for all new buses to be electric: A case study for India](#)", Lawrence Berkeley National Laboratory.
84. Palchak,D, J.Cochran, R.Deshmukh, A.Ehlen, S.Soonee, S. Narasimhan, M. Joshi, B. McBennett, M.Milligan, P. Sreedharan, I. Chernyakhovskiy, N.Abhyankar (2017). "[Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid](#)", Lawrence Berkeley National Laboratory and National Renewable Energy Laboratory. LBNL-2001012
85. Abhyankar, Nikit, Anand Gopal, Collin Sheppard, Won Young Park, and Amol Phadke (2017). "[Techno-Economic Assessment of Deep Electrification of Passenger Vehicles in India](#)", Lawrence Berkeley National Laboratory. LBNL-1007121.
86. Abhyankar, Nikit, Nihar Shah, Amol Phadke, and Won Young Park (2017). "[Technical and Economic Aspects of Designing an Efficient Room Air-Conditioner Program in India](#)". Lawrence Berkeley National Laboratory. LBNL-2001048.
87. Abhyankar, Nikit, Nihar Shah, Won Young Park, and Amol Phadke (2017). "[Accelerating Energy Efficiency Improvements in Room Air Conditioners in India: Potential, Costs-Benefits, and Policies](#)". Lawrence Berkeley National Laboratory. LBNL-1005798.
88. Phadke, A., Nikit Abhyankar, and Ranjit Deshmukh. (2016). "[Techno Economic Assessment of Integrating 175 GW of Renewable Energy into the Indian by 2022](#)". Lawrence Berkeley National Laboratory. LBNL-1005800.
89. Shah, Nihar, Nikit Abhyankar, Won Young Park, Amol Phadke, S. Diddi, D. Ahuja, P. Mukherjee, and Archana Walia (2016). "[Cost-Benefit of Improving the Efficiency of Room Air Conditioners \(Inverter and Fixed Speed\) in India](#)". Lawrence Berkeley National Laboratory. LBNL-1005787.

90. Gopal, Anand R., Maggie Witt, Nikit Abhyankar, Colin Sheppard, and Andrew Harris (2015). "[Battery electric vehicles can reduce greenhouse gas emissions and make renewable energy cheaper in India](#)". Lawrence Berkeley National Laboratory LBNL-184562.
91. Phadke, Amol, Nikit Abhyankar, and Poorvi Rao (2014). "[Empirical Analysis Of The Variability Of Wind Generation In India: Implications For Grid Integration](#)". Lawrence Berkeley National Laboratory. LBNL-6673E.
92. Abhyankar, Nikit, Amol Phadke, Jayant Sathaye, Ranjit Bharvirkar, Alissa Johnson, Ranjit Deshmukh, Bob Lieberman, Cathie Murray, and Ajith Rao. (2013). "[Modeling Clean and Secure Energy Scenarios for the Indian Power Sector in 2030](#)". Lawrence Berkeley National Laboratory. LBNL-6296E
93. Abhyankar, Nikit (2009), "[Mitigation \(of Climate Change\)](#)". In S. Schneider and M Mastrandrea (Ed.), *Encyclopedia of Climate and Weather* (Second ed.). New York: Oxford University Press.

SELECTED OPINION PIECES

1. [Round-the-clock clean power is waiting to play the game-changer](#), *Mint* (August 18, 2025)
2. [Why efficient air conditioners must be a national priority for India](#), *The Hindu* (April 1, 2025)
3. [A New Era for Rural Electric Cooperatives](#), *T&D World* (Sep 6, 2023)
4. [A strategy to win energy independence by 2047](#), *Hindustan Times* (May 9, 2023)
5. [Coal to solar generation swaps ensure a clean and reliable grid](#), *The Economic Times* (May 8, 2023)
6. [Achieving Atmanirbharta through clean energy](#), *The Hindu Business Line* (Nov 16, 2022)
7. [India's energy choices now will decide economic and environmental future](#), *The Economic Times* (May 9, 2022)

SELECTED INVITED TALKS

1. "Indian energy storage policy, market and way forward to accelerate the deployment", at "Energy Storage - Driving the Clean Energy Transition" conference organized by the Ministry of New and Renewable Energy, Government of India, New Delhi (September 2025)
2. "Driving towards the NetZero Future: Energy Storage Innovations and Market Outlook", at World Energy Storage Day Leadership Dialogue organized by NetZero Energy Transition Association (NETRA) (September 2025)
3. "Energy storage in India: Economics and new regulatory pathways", at Designing Solar plus Storage Tenders in India, organized by New and Renewable Energy Department, Government of Madhya Pradesh, Bhopal (September 2025)
4. "India 2047: Energy Pathways for a Developed Nation", at Indian Institute of Technology, Chennai (June 2025)
5. "Energy Security Goals for a Viksit Bharat", at Climate Trends Roundtable, New Delhi (June 2025)
6. "Sustainability and Energy in the US-India corridor", at Stanford India Conference, Stanford University (April 2025)
7. "Economics of Green Steel in India", at Confederation of Indian Industries (CII) (April 2025)

8. "Energy Storage in India: Requirement and Operation", at World Sustainable Development Summit, The Energy and Resources Institute (March 2025)
9. "Energy Transition in India: Opportunities and Challenges", at LeHigh University (September 2024)
10. "Energy Transition in India: Opportunities and Challenges", at CSIS roundtable on Operationalizing India's Clean Energy Future: High-Impact Opportunities at New York Climate Week (September 2024)
11. "Powering Prosperity: Emerging Promise of DPLs in India's Energy Sector", *Decoding Impact* Podcast (September 2024)
12. "Sustainable Energy Transition in India", at Princeton University in the Harvard-Princeton India Conference (April 2024)
13. "Clean Energy Opportunities in India", at Indiaspora Urgent Climate Action Conference, Eastern Hemisphere (April 2024)
14. "Resource Adequacy: Need and Challenges", India Smart Utility Week (March 2024)
15. "Grid-Scale Energy Storage: Technology and Economic Trends and Implications for India", Goldman School of Public Policy, University of California, Berkeley (February 2024)
16. "Green Hydrogen and Energy Storage: Technology and Economic Trends and Implications for India", Indian Power Stations Conference, National Thermal Power Corporation of India (February 2024)
17. "The Missing Piece: How Offshore Wind Will Complement Other Clean Energy Technologies to Decarbonize the Grid", Offshore Windpower Conference, American Clean Power, Boston (October 2023)
18. "Electricity Market Coupling in India", Institute for Energy Economics and Financial Analysis, (October 2023)
19. "Clean Energy Transition in Emerging Economies", at University of California, Berkeley (October 2023)
20. "Economics of Energy Storage in India", Workshop on Battery Energy Storage System, Gujarat Power Corporation Limited, Government of Gujarat (India) (October 2023)
21. "Modernizing the Grid for deep renewable energy penetration", at Energy Finance 2023 (Accelerating Global Transition to Clean Energy), Institute for Energy Economics and Financial Analysis (IEEFA), (June 2023)
22. "Pathways to achieving energy independence by 2047", Climate Trends (India), 28 March 2023
23. "Energy Modeling for Decarbonization Planning: Advice and Resources for States", Clean Energy States Alliance, (April 2023)
24. "Accelerate 175: How India can accelerate its renewable energy deployment", Center for Strategic and International Studies (April 2023)
25. "Harnessing India's Renewable Energy Edge for Energy Independence", at Energy Management Center, Kochi (India) (June 2022)
26. "Global Perspectives on Power Sector Decarbonization", at Stanford University (April 2022)
27. "Harnessing India's Renewable Energy Edge for Energy Independence", at India Climate and Energy Modeling Forum, NITI Aayog (March 2022)
28. "Role of Energy Storage in India", at India Energy Storage Alliance (January 2022)
29. "Pathways to a Carbon Free Electricity System", at 2021 Aspen Energy Week Forum (November 2021)
30. "Financing a Just Transition", at U.S.-Indonesia Coal Transition Forum (October 2021)
31. "Resource Adequacy framework for India", at National Conference on Renewable Energy Integration, USAID Greening the Grid (September 2021)
32. "Redesigning the Power markets - An enabler to RE Integration", at National Conference on Renewable Energy Integration, USAID Greening the Grid (September 2021)
33. "Grid Integration Issues to Facilitate High Renewable Energy Transition", at INDIA- ISA Energy Transition Dialogue 2021, International Solar Alliance (August 2021)

34. "Driving Power System Decarbonization Through Public Policy", at Clean Energy Purchasing and Decarbonization Workshop, Asia-Pacific Economic Cooperation (August 2021)
35. "Decarbonization pathways in South Asia", at Asia Clean Energy Forum 2021 (June 2021)
36. "Leapfrogging Opportunities Towards Clean and Smart Transportation", at India Smart Utility Week organized by India Smart Grid Forum (March 2021)
37. "Role of Energy Storage in Karnataka Context", Karnataka Power System Transformation Workshop, International Energy Agency (January 2021)
38. "Leapfrogging Opportunities in Grid Decarbonization", at First World Solar Technology Summit organized by International Solar Alliance (September 2020)
39. "Plummeting Solar, Wind, and Battery Costs Can Accelerate Our Clean Energy Future", at Haas School of Business, University of California, Berkeley (August 2020)
40. "Plummeting Solar, Wind, and Battery Costs Can Accelerate Our Clean Energy Future", at Wharton School of Business, University of Pennsylvania (August 2020)
41. "Plummeting Solar, Wind, and Battery Costs Can Accelerate Our Clean Energy Future", at Center on Global Energy Policy, Columbia University (July 2020)
42. "Balancing the Grid through Ancillary Services", at Energy Efficiency Services Limited, India (virtual) (May 2020)
43. "Pathways for Deep Decarbonization of California's Power Sector", at University of California, Berkeley (April 2020)
44. "International Perspectives on Power Sector Decarbonization", at University of San Francisco, San Francisco (April 2020)
45. "Battery Storage: Economics, Operation, and Regulatory Framework", at Forum of Regulators 70th meeting at Diu (India) (January 2020)
46. "Economics of Electric Buses and Charging Infrastructure in India", at training program on 'Planning and Procurement of Electric Buses' organized by International Association of Urban Transport (UITP), Bangalore, India (February 2019)
47. "Leapfrogging to Electric and Smart Vehicles: Key Challenges and Opportunities", at American Center Jakarta organized by the United States Embassy in Jakarta Indonesia (September 2018)
48. "Technology and Policy Leapfrogs in India's Energy Sector" at Indian Institute of Technology Bombay, Mumbai (August 2018)
49. "Transformation in India: Role of models and analysis in informing decisions", at Pathways to Low Greenhouse Gas Futures: Challenges and Opportunities, organized by Energy Modeling Forum at Snowmass, CO (July 2018)
50. "Clean Energy and Power Sector in India: Key Challenges and Opportunities", as keynote speech at Conference on Rooftop Solar PV Systems organized by The World Bank and the State Bank of India, Mumbai (September 2017)
51. "India's Clean Energy Future - Key Leapfrogging Opportunities" in The Energy Seminar at Stanford University, Stanford (April 2017)
52. "Innovation for Global Energy Access", in the Tufts Energy Conference at Tufts University, Boston (February 2017)
53. "Techno-Economic Assessment of Integrating 175GW of Renewable Energy into the Indian Grid by 2022" at Stanford University, Stanford (January 2017)
54. "Political Economy of Energy Policy in India" at University of Texas, Austin (March 2016)

55. "Technical Feasibility of Renewable Energy Grid Integration in India", technical talk at Forum of Regulators 43rd meeting at Mussoorie (India), (May 2015)
56. "Modeling Electricity Systems and Industry" at International Conference on 2050 Calculator organized by Industrial Technology Research Institute and UK Department of Energy and Climate Change, Taipei Taiwan (February 2015)
57. "Key Challenges in Renewable Energy Grid Integration", keynote speech at Electric Power Generation conference organized by the Colombian Association of Electric Power Generators (ACOLGEN), Bogota (October 2014)

SELECTED CONFERENCE PRESENTATIONS

1. "Cost-effective decarbonization of California's Power Sector by 2030 With the Aid of Battery Storage", *POWER Conference on Energy Research and Policy*, University of California, Berkeley. (April 2020)
2. "Empirical Assessment of the Appliance-Level Load Shape and Demand Response Potential in India", *Energize- Energy Innovation for a Sustainable World*, India (February 2020)
3. "Economic and Environmental Benefits of Electricity Market Reforms in China", at International Energy Week hosted by the International Energy Agency, Paris (June 2019)
4. "Synergies between Energy Efficiency and Renewable Energy Grid Integration", at 3rd Innovation & Research in Energy Efficiency (INSPIRE) organized by Energy Efficiency Services Limited and the World Bank, New Delhi, India (November 2018)
5. "The 1000 Power Plan Question: Cooling the Planet Sustainably", at Indonesia Energy Efficiency and Conservation Conference & Exhibition in Jakarta Indonesia (September 2018)
6. "Economics of electric buses in India", Conference on Sustainable Public Transport, Organized by the Association of State Road Transport Undertaking and BusWorld, Bangalore, India. (August 2018)
7. "Assessing the Cost-Effective Energy Saving Potential from Top-10 Appliances in India". *9th International Conference on Energy Efficiency in Domestic Appliances and Lighting (EEDAL)*. Irvine, California. (September 2017)
8. "Relationship between Appliance Prices and Energy-Efficiency Standards and Labeling Policies: Empirical Evidence from Residential Air Conditioners". *9th International Conference on Energy Efficiency in Domestic Appliances and Lighting (EEDAL)*. Irvine, California. (September 2017)

SELECTED MEDIA QUOTES

1. [India's wasted solar energy highlights lagging battery storage](#), *Nikkei Asia*, September 29, 2025
2. [Explained: How electricity consumers in India can save up to ₹60,000 crore annually](#), *The Economic Times*, August 26, 2025
3. [India Needs 61 GW Energy Storage by 2030 to Support 500 GW Clean Power Capacity: Study](#), *Outlook Business*, August 26, 2025
4. [India requires \\$50 billion new investment in storage by 2032: Report](#), *Down to Earth*, August 26, 2025
5. [India wants air conditioners to be made with milder temperature settings to save energy](#), *The Washington Post*, July 14, 2025

6. [India looks to limit temperature settings on air conditioners to save electricity](#), *PBS News*, July 14, 2025
7. [India wants air conditioners to be made with milder temperature settings to save energy](#), *ABC News*, July 14, 2025
8. [India wants air conditioners to be made with milder temperature settings to save energy](#), *San Francisco Chronicle*, July 14, 2025
9. [India wants air conditioners to be made with milder temperature settings to save energy](#), *The Associated Press*, July 14, 2025
10. [India wants air conditioners to be made with milder temperature settings to save energy](#), *The Economic Times*, July 14, 2025
11. [Energy experts call for unified energy interface, grid-level reforms in India's power sector](#), *The Week*, June 18, 2025
12. [India delivers 24x7 power at ₹6/kWh, cheaper than coal](#), *The Economic Times*, June 2, 2025
13. [From Rs 200 to Rs 9: Plummeting solar costs could spark India's clean energy revolution](#), *Down to Earth*, June 2, 2025
14. [Can India Be Cool?](#), *The Economist*, May 29, 2025
15. [More Efficient Cooling May Shield India From Summer Blackouts](#), *Bloomberg News*, March 26, 2025
16. [Indians can avert power shortages, save Rs 2.2 lakh cr with energy efficient ACs](#), *Economic Times*, March 26, 2025
17. [India Likely To Add 150 Million Room ACs By 2035 Amid Peak Power Demand](#), *NDTV*, March 26, 2025
18. [Doubling AC efficiency can prevent power crisis, save India \\$26 billion: Study](#), *India Today*, March 27, 2025
19. [India likely to add 150 million room ACs by 2035 amid rising temperatures: Study](#), *Mint (LiveMint)*, March 26, 2025
20. [Room ACs could contribute 120 GW to India's peak power demand by 2030: UC Berkeley study](#), *Moneycontrol*, March 26, 2025
21. [Why updating MEPS for ACs is crucial to save power and reduce consumer bills](#), *The Week*, March 26, 2025
22. [India likely to add 150 million room ACs by 2035 amid rising temperatures: Study](#), *The Telegraph*, March 26, 2025
23. [भारत में आने वाली है एयर कंडीशनर की बाढ़...](#), *ABP News* (Hindi), March 26, 2025
24. [2035 तक भारत में 15 करोड रुम एसी जुड़ेंगे : अध्ययन](#), *ThePrint Hindi*, March 26, 2025
25. [India's energy consumption is expected to rise by 3-4 times over a decade: IECC](#), *Business World*, August 3, 2024
26. [Power cuts in India to rise by 2027: Report](#), *The Hindu*, July 31, 2024
27. [India may face potential evening power shortages by 2027, warns IECC](#), *The Economic Times*, July 31, 2024
28. [India's power demand set to surge by 80 GW by 2027; experts recommend 50 GW solar expansion](#), *ET EnergyWorld*, July 31, 2024
29. [India's energy consumption is expected to rise by 3-4 times over a decade: IECC](#), *Zee News*, July 31, 2024
30. [India can leverage its solar and storage edge to avoid power shortages: Report](#), *Deccan Herald*, July 31, 2024
31. [Despite new coal plants, India will face more power cuts by 2027: Research](#), *Business Standard*, July 31, 2024
32. [India may face potential evening power shortages by 2027, warns IECC](#), *The Print*, July 31, 2024
33. [India to face evening power shortages by 2027 if electricity demand continues to grow, warns IECC](#), *Business Insider*, July 31, 2024
34. [India's energy consumption is expected to rise by 3-4 times over a decade: IECC](#), *Business Insider*, July 31, 2024
35. [India may face potential evening power shortages by 2027, warns IECC](#), *Business World*, July 31, 2024
36. [Wind and solar in limbo: Long waitlists to get on the grid are a 'leading barrier'](#), *Chicago Tribune* (April 21, 2024)

37. [US offshore wind pushes ahead despite industry turmoil](#), *Canary Media* (August 24, 2023)
38. [How Offshore Wind Can Supply 25% of U.S. Electricity by 2050](#), *TIME* (August 2, 2023)
39. [Offshore wind potential in the US is huge but untapped](#), *The Verge* (August 1, 2023)
40. [US could supply up to 25% of its power demand from offshore wind power: study](#), *S&P Global* (August 1, 2023)
41. [New study finds offshore wind could provide 25% of U.S. electricity needs by 2050](#), *KCBX* (August 1, 2023)
42. [Offshore wind can meet quarter of US power demand](#), *ReNews* (August 1, 2023)
43. [Modi's Atmanirbhar Bharat Push: India Can Achieve Energy Independence by 2047: US Report](#), *News 18* (March 21, 2023)
44. [India can achieve energy independence by 2047: US study](#), *The Indian Express* (March 20, 2023)
45. [Modi's Atmanirbhar Bharat push: India can achieve energy independence by 2047: US Report](#), *The Economic Times* (March 20, 2023)
46. [India can achieve energy independence by 2047: US study](#), *The Financial Express* (March 20, 2023)
47. [India Could Achieve Energy Independence By 2047: US Report](#), *NDTV* (March 20, 2023)
48. [India on track to achieve energy independence by 2047: US Energy study](#), *The Week* (March 20, 2023)
49. [India may become energy-independent by 2047, transition to near 100% EV sales: US study](#), *WION* (March 20, 2023)
50. [India can become energy independent by 2047: U.S. study](#), *Fortune India* (March 20, 2023)
51. [India can achieve energy independence through clean technology by 2047: US Report](#), *Telegraph India* (March 20, 2023)
52. [India Can Achieve Energy Independence By 2047, Needs \\$3 Trillion Investment: US Energy Dept Study](#), *ABP Live* (March 20, 2023)
53. [India can achieve energy independence by 2047, says US Energy Dept study](#), *Business Standard* (March 19, 2023)
54. [India's Lithium reservoir is more than required, says Berkley Lab study](#), *The New Indian Express* (March 16, 2023)
55. [Lithium Find Boosts India's Efforts for Energy Independence by 2047](#), *MERCOM* (March 16, 2023)
56. [How India Can Achieve Energy Independence by 2047: Berkeley Lab Study](#), *Solar Quarter* (March 16, 2023)
57. [Renewables and lithium could propel India to energy independence by 2047](#), *Energy Monitor* (March 16, 2023)
58. [India's energy independence by 2047 a certainty](#), *Times of India* (March 15, 2023)
59. [Towards Atmanirbhar Bharat In Energy By 2047](#), *Outlook Planet* (March 15, 2023)
60. [Clean tech path to India's energy independence by 2047: Study](#), *Let Me Breathe* (March 15, 2023)
61. [India can achieve energy independence by 2047 through clean technology: Study](#), *PV Magazine* (March 15, 2023)
62. [India's clean tech can achieve energy independence by 2047: study](#), *Ground Report* (March 15, 2023)
63. [India has the potential to become a world leader in production of electric vehicles, says Berkeley research](#), *Financial Express* (November 15, 2022)
64. [Research suggests that India can be the world leader in EV production](#), *Times Now* (November 15, 2022)
65. [India has potential to become global leader in EV production: Research](#), *Hindustan Times* (November 15, 2022)
66. [Electric freight trucks will have economic and environmental benefit for India: study](#), *Live Mint* (November 15, 2022)
67. [India has potential to become world leader in EV production: Report](#), *Business Standard* (November 15, 2022)

68. [India has the potential to become a world leader in production of electric vehicles](#), *Deccan Chronicle* (November 15, 2022)
69. [India has the potential to become a world leader in production of electric vehicles: Berkeley Research](#), *The Indian Express* (November 15, 2022)
70. [India has the potential to become a world leader in production of electric vehicles: Berkeley Research](#), *The Economic Times* (November 15, 2022)
71. [India Has Potential To Become Leader In Electric Vehicle Production: Report](#), *NDTV* (November 15, 2022)
72. [India has the potential to become a world leader in production of electric vehicles: Berkeley Research](#), *Money Control* (November 15, 2022)
73. [India may lead the world in EV production, says report](#), *News Nine* (November 15, 2022)
74. [This energy source doesn't exist in California. But it could account for 25% of the state's electric power in the future](#), *San Francisco Chronicle* (August 10, 2022)
75. [Could wind energy really power 3 million homes?](#), *News Nation* (July 25, 2022)
76. [America Can Cut Emissions in Half by 2030—if We Choose To](#), *Mother Jones* (June 16, 2022)
77. [The US Can Halve Its Emissions by 2030—if It Wants To](#), *Wired* (June 15, 2022)
78. [Scientists Say They've Created a Roadmap for Cutting US Emissions in Half by 2030](#), *Inside Climate News* (June 7, 2022)
79. [US has eight years to cut its emissions by half. Scientists say there's a way](#), *The Hill* (June 3, 2022)
80. [This is how halving the US's greenhouse gas emissions by 2030 can be done](#), *Sustainability Times* (June 3, 2022)
81. [It's Entirely Possible For The US to Meet Its 2030 Climate Goals. Here's How](#), *Science Alert* (June 3, 2022)
82. [Energy And Environmental Researchers Pooled Their Knowledge To Provide Recommendations To Fulfill The United States' Climate Pledge](#), *Verve Times* (June 3, 2022)
83. [A 50% reduction in emissions by 2030 can be achieved. Here's how](#), *Science Daily* (June 2, 2022)
84. [How U.S. emissions could be cut in half by 2030](#), *Earth* (June 2, 2022)
85. [Study shows a 50% reduction in emissions by 2030 can be achieved](#), *Phys.org* (June 2, 2022)
86. [OSW Advocates Urge California to Think Bigger](#), *RTO Insider* (May 18, 2022)
87. [How serious is the threat posed by climate change in India?](#), *Times Now* (December 31, 2021)
88. [A new study shows India can have a more sustainable power system by 2030](#), *Business India* (December 15, 2021)
89. [India's historic lows in clean energy prices to transform power sector](#), *Business Standard* (December 10, 2021)
90. [US study validates Narendra Modi's green energy goal](#), *Hindustan Times* (December 10, 2021)
91. [India's Clean Energy Target Can Be Fulfilled By 2030, Says New Berkeley Study](#), *Republic TV* (December 10, 2021)
92. [India's clean power target will double electricity supply economically if low-cost storage is deployed](#), *PV Magazine* (December 10, 2021)
93. [Booming electric vehicle demand spurs mining, metals sector](#), *S&P Podcast* (May 11, 2021)
94. [Accelerating Clean, Electrified Transportation By 2035](#), *Electrify This!* (April 29, 2021)
95. [EV Cars and Trucks Will Help Consumers Save Money](#), *Assembly Magazine* (April 29, 2021)
96. [Study Suggests Commercial Electric Trucks Will Have Huge Benefits](#), *Inside EVs* (April 24, 2021)

97. [NJ Looks to Boost Heavy-duty Charge Points, *RTO Insider*](#) (April 23, 2021)
98. [Report: All new cars and trucks in U.S. could be electric by 2035, *Yale Climate Connections*](#) (April 22, 2021)
99. [Add electric vehicles, not bulk transmission, for a low-cost, clean grid: UC Berkeley study, *PV Magazine*](#) (April 22, 2021)
100. [Clean energy source: Lithium in the Mojave desert, *ABC News*](#) (April 21, 2021)
101. [UC-Berkeley Report Claims Electric Cars Will Save Americans \\$2.7 Trillion, Create 2 Million Jobs, *CleanTechnica*](#) (April 20, 2021)
102. [All-electric car and truck sales by 2035 would save \\$2.7 trillion, but will take smart policy to drive clean, *Utility Dive*](#) (April 19, 2021)
103. [Washington zooms ahead on EVs, *Grist*](#) (April 19, 2021)
104. [An electric vehicle economy requires ambitious policies and investments, *The Hill*](#) (April 16, 2021)
105. [Electric cars cheaper than ICE 'within 5 years' – study, *Just Auto*](#) (April 16, 2021)
106. [Advances mean all new US vehicles can be electric by 2035, study finds, *The Guardian*](#) (April 15, 2021)
107. [Electrifying All New Vehicles Sales by 2035 Can Be Done, Would Save U.S. Consumers \\$2.7 Trillion by 2050, Report Finds, *Morning Consult*](#) (April 15, 2021)
108. [All new US vehicles could be required to be electric by 2035, new study says, *The Hill*](#) (April 15, 2021)
109. [Daily on Energy: China would have to cut coal carbon emissions in half by 2030 to fulfill pledge, *Washington Examiner*](#) (April 15, 2021)
110. [Every new car and truck in the U.S. can be electric by 2035, *Fast Company*](#) (April 15, 2021)
111. [The U.S. Can Get to All Electric Vehicles by 2035, *Gizmodo*](#) (April 15, 2021)
112. [New study says commercial truck electrification is within reach, *Charged*](#) (April 6, 2021)
113. [General Electric Will Surge if Spending Plan Goes Through, *Investor Place*](#) (April 1, 2021)
114. [How much more energy will the US need to electrify everything?, *Quartz*](#) (March 19, 2021)
115. [Berkeley Lab finds commercial trucking is capable of electrification, *The Daily Californian*](#) (March 19, 2021)
116. [Commercial truck electrification is within reach, *ScienceDaily*](#) (March 16, 2021)
117. [Nearly as Green in Half the Time, *Electrical Contractor*](#) (August 2020)
118. [2-wheeler electrification: challenges and opportunities, *The Hindu Business Line*](#) (July 15, 2019)
119. [Heat and the folly of air-conditioners, *FountainInk*](#) (July 12, 2019)
120. [Fast-Rising Demand for Air Conditioning Is Adding to Global Warming. The Numbers Are Striking, *Inside Climate News*](#) (November 12, 2018)
121. [One appliance could determine whether India, and the world, meet climate change targets, *Los Angeles Times*](#) (Dec 29, 2017)
122. [SBI extends Rs. 2,317 crore for rooftop solar power projects, *Outlook India*](#) (October 29, 2017)
123. [The Race against Heat: How do you cool 7.5 billion people on a warming planet?, *The Verge*](#) (Sep 14, 2017)
124. [Market round-up: Allocation to India by Asia ex-Japan funds down: EVs can alleviate utilities' financial pain, *Mint*](#) (July 26, 2017)
125. [Analysis shows India's EV drive will boost power utilities, increase energy security, *TechXplore*](#) (July 18, 2017)

126. [India's EV Drive Will Boost Power Utilities, Increase Energy Security](#), *NewsWise* (July 17, 2017)
127. [World's Hottest Market: Air Conditioners For India And Hundreds Of New Electric Plants To Power Them](#), *Forbes* (March 1, 2017)
128. [Powering up India renewably](#), *Listening Brief* (August 28, 2015)
129. [A smart idea](#), *Down To Earth* (August 17, 2015)

OTHER MEDIA COVERAGE

130. [Reconductoring the U.S. Electricity Grid for Renewables](#), *The Washington Post*, (May 28, 2024)
131. [The U.S. Urgently Needs a Bigger Grid. Here's a Fast Solution](#), *The New York Times* (April 14, 2024)
132. [Offshore wind looks to the future](#), *WCVB 5*, (September 21, 2023)
133. [Why an energy crisis and \\$5 gas aren't spurring a green revolution](#), *The Washington Post* (June 14, 2022)
134. [California pulls key floating wind action plan at last minute to weigh up '50GW by 2045'](#), *RECHARGE* (June 1, 2022)
135. [CEC Postpones Vote on Offshore Wind Goals](#), *RTO Insider* (May 27, 2022)
136. [Study suggests India could economically meet electricity demand through renewables by 2030](#), *Economic Times* (December 10, 2021)
137. [Plummeting Wind, Solar, And Battery Costs Now Enable An 80% Clean Electricity System By 2030](#), *Forbes* (June 10, 2021)
138. [Economics, not climate, is the main driver behind automakers' embrace of electric vehicles](#), *Washington Examiner* (May 20, 2021)
139. [House Republicans raise China specter on EVs](#), *POLITICO* (May 18, 2021)
140. [Exclusive: White House backs 2030 milestone on path to net zero grid](#), *Reuters* (April 26, 2021)
141. [Climate Summit: How Do You Cut 50% of Greenhouse-Gas Emissions by 2030?](#), *The Wall Street Journal* (April 23, 2021)
142. [How The U.S. Could Halve Climate Emissions By 2030](#), *NPR* (April 22, 2021)
143. [The Making of Biden's Superfast Push for Clean Electricity](#), *Bloomberg* (December 10, 2020)
144. [Building Electrical Infrastructure](#), *Public Utilities Fortnightly* (December 2020)
145. [Biden's renewable energy deadline too ambitious says power boss](#), *Financial Times* (November 30, 2020)
146. [The exciting explosion of renewable energy](#), *Morning Sun* (November 24, 2020)
147. [Wind and Solar: The New Cash Crops](#), *Rocky Mountain Institute* (October 28, 2020)
148. [Dueling Climate Analyses Offer a Preview of Political Tensions to Come](#), *Bloomberg* (October 20, 2020)
149. [Fossil fuel suppliers face battle for survival as transition builds](#), *Financial Times* (October 5, 2020)
150. [A Decarbonized Grid by 2035: Necessary, Dependable, and Affordable](#), *Chicago Policy Review* (September 22, 2020)
151. ['Math Doesn't Yet Add Up' for Utility Decarbonization Goals: Deloitte](#), *Greentech Media*, (September 21, 2020)
152. [Should California accelerate its 100% carbon-free electricity mandate?](#), *San Diego Union-Tribune* (September 17, 2020)
153. [Hydrogen, carbon capture key to net-zero U.S. electricity: study](#), *Reuters* (September 9, 2020)
154. [How Much Investment Is Needed For A Clean Energy Future?](#), *Forbes* (September 9, 2020)

155. [Decarbonising Of Grids To Accelerate Due To Dropping Storage Costs](#), **Saur Energy** (September 9, 2020)
156. [U.S. utilities say Biden plan to cut CO2 hinges on breakthroughs](#), **Reuters** (September 8, 2020)
157. [California bets on batteries to ease blackout worries](#), **Financial Times** (August 25, 2020)
158. [Here's how California can keep the lights on while meeting its clean energy goals](#), **Los Angeles Times** (August 18, 2020)
159. [Biden gambles on placing climate change at heart of US energy policy](#), **Financial Times** (August 17, 2020)
160. [Plummeting Renewable Energy, Battery Prices Mean China Could Hit 62% Clean Power And Cut Costs 11% By 2030](#), **Forbes** (August 10, 2020)
161. [A Totally Green Electric Grid Will Dramatically Speed Up Climate Action](#), **Bloomberg** (July 28, 2020)
162. [The Next Energy Battle: Renewables vs Natural Gas](#), **The New York Times** (July 7, 2020)
163. [The Map and the Territory: What can energy system modeling tell us about our ability to deeply decarbonize our power grid by replacing fossil fuels with wind, solar, and batteries?](#), **Energy Transition** (June 2020)
164. [The United States Could Get To 90 Percent Clean Power by 2035](#), **PBS** (June 12, 2020)
165. [90% clean power by 2035 is 'challenging but feasible'](#), **Solar PV Magazine** (June 11, 2020)
166. [90% renewable energy by 2035 is possible, says UC Berkeley report](#), **S&P Market Intelligence** (June 11, 2020)
167. [The US could shift to 90-percent renewable energy by 2035 at no extra cost](#), **Popular Science** (June 10, 2020)
168. [Coronavirus costing oil and gas \\$1.8 trillion in 2020, new data shows](#), **Houston Chronicle** (June 10, 2020)
169. [The US could run its electric grid on 100% renewable energy by 2045](#), **Daily Mail UK** (June 10, 2020)
170. [Levelized Cost of Storage for Standalone BESS Could Reach ₹4.12/kWh by 2030: Report](#), **MERCOM India** (June 2, 2020)
171. [Can India Afford to Cool Down?](#), **The Wall Street Journal** (November 21, 2018)

PROFESSIONAL SERVICE

1. Guest editor for *The Electricity Journal*, for a special issue on Indian power sector
2. Regularly peer reviews articles for academic journals such as *Nature Communications*, *Energy Policy*, *Applied Energy*, *Energy, Renewable & Sustainable Energy Reviews*, *Energies*, *Development Engineering*, *Resources, Conservation & Recycling*, *Environmental Research Letters*, *Energy Efficiency*, *Energy Research & Social Sciences*, *Energy Strategy Reviews*, *Energy Economics*, *IOP SciNotes*, *Earth's Future*, *Transportation Research Record*, *Clean Technologies and Environmental Policy* etc.
3. Reviewer for The World Bank's \$300 million loan program to India for the energy efficiency scale-up
4. Member of the jury for the international energy innovation challenge organized by Energy Efficiency Services Limited (EESL), India in 2018

DOCTORAL COMMITTEES

1. Sindhu Sreedhara, Energy Resources Engineering, Stanford University (Graduated 2024)
2. Prafulla Varhade, University of Petroleum and Energy Studies, Dehradun (India) (Graduated 2022)